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Abstract. We study a natural class of flow problems that occur in the context of
wireless networks; the objective is to maximize the flow from a set of sources to
one sink node within a given time limit, while satisfying a number of constraints.
These restrictions include capacities and transit times for edges; in addition, every
node has a bound on the amount of transmission it can perform, due to limited bat-
tery energy it carries. We show that this Maximum energy-constrained dynamic
flow problem (ECDF) is difficult in various ways: it is NP-hard for arbitrary tran-
sit times; a solution using flow paths can have exponential-size growth; a solution
using edge flow values may not exist; and finding an integral solution is NP-hard.
On the positive side, we show that the problem can be solved polynomially for
uniform transit times for a limited time limit; we give an FPTAS for finding a
fractional flow; and, most notably, there is a distributed FPTAS that can be run
directly on the network.

1 Introduction

Energy-Constrained Flows and Our Results: Optimizing the flow in a network is
one of the classical problems in the theory and practice of algorithms. Even in the early
days, more than 50 years ago, it was recognized by Ford and Fulkerson that flow has a
temporal dimension, as the flowing objects need time to get to their destination. This is
particularly relevant in many current real-world applications, like traffic or communi-
cation, where the aspect of time becomes highly important because there is significant
variance in the amount of flow over time, so that stationary flows fail to describe the
phenomena that are particularly relevant, like congestion. In recent years, a variety of
excellent papers has addressed these problems, making tremendous progress in theory,
and providing tools for dealing with the challenges of practical adaptive traffic control.

In this paper we describe an additional aspect that becomes important in the context
of another highly relevant topic that has attracted a large amount of attention: when
considering the flow of information in a distributed and wireless network, one of the
essential features is that nodes have limited energy supply. This limits the amount of in-
formation they can transmit to their neighbors before dying due to an exhausted battery;
as a consequence, routing algorithms do not just have to deal with edge capacities and
transit times, but also with limits on the capabilities of nodes to pass on information.
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We give the first algorithmic study of the resulting Maximum energy-constrained
dynamic flow problem (ECDF). Our results are as follows.

– With arbitrary transit times, ECDF is NP-hard (Theorem 1). A solution using flow
paths can have exponential size growth (Theorem 2). A solution using edge flow
values does not seem to exist.

– Finding integral solutions is NP-hard (Theorem 3).
– For uniform transit times and a polynomially bounded time horizon, we show that

the problem can be solved in polynomial time (Lemma 1).
– The complexity of finding optimal fractional solutions is an open problem. The

problem admits a FPTAS (Theorem 4).
– There is a distributed FPTAS that can be run directly in the network (Theorem 6).

In the remainder of this section, we discuss related work, both on dynamic network
flows and on wireless sensor networks. Section 2 provides formal definitions, while
Section 3 shows complexity results. Section 4 focuses on the case of uniform transit
times; we show that for polynomially bounded time horizon, there is a polynomial-time
algorithm, and develop an FPTAS for general time horizon. In Section 5 we finally give
a distributed FPTAS, i.e., a class of algorithms that can be run directly on the network.

Flows over time: Already Ford and Fulkerson [11,12] proposed the dynamic flows
model (also referred to as flows over time), where the individual edges have transit
times, determined by the speed at which flow traverses them. Flow rates into edges may
vary over time and are bounded by the given capacities. Ford and Fulkerson show that
the maximum s-t-flow over time problem can be solved in polynomial time.

The quickest s-t-flow problem (here a demand is fixed and the goal is to minimize
the time horizon T ) can be solved by performing a binary search with respect to T ,
solving a maximum s-t-flow over time problem in each step. For an integral demand
Fleischer and Tardos [10] show that the binary search can be stopped after a polyno-
mially bounded number of steps, yielding the optimal time horizon. A much quicker,
strongly polynomial algorithm was given by Burkard et al. [3].

In the quickest transshipment problem many sources and sinks with supplies and de-
mands are given. Flow can be routed from any source to any sink. This problem appears
to be considerably harder than the quickest s-t-flow problem. Nevertheless, Hoppe and
Tardos [15,16] manage to give a polynomial time algorithm, which, however, applies
submodular function minimization as a subroutine, rendering the algorithm impractical.

Klinz and Woeginger [17] show that computing a min-cost quickest s-t-flow in a
network with cost coefficients on the edges is already NP-hard for series-parallel graphs.
It is even strongly NP-hard to calculate an optimal temporally repeated flow in presence
of costs. For the multicommodity version of this problem Fleischer and Skutella [9]
propose a (2 + ε)-approximation algorithm.

For two variations of the multicommodity quickest flow over time problem (without
costs) Fleischer and Skutella [9] give an FPTAS which is based on condensed time-
expanded graphs. Proofs of NP-hardness and strong NP-hardness for these variations
are presented in [14]. The NP-hardness proof inspired our proof of Theorem 1.

The survey articles by Aronson [1] and Powell et al. [22] as well as the book pub-
lished by Ran and Boyce [23] contain examples and references pertinent to the area of
flows over time.
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Wireless Sensor Networks: In a classical network setting, there is one central author-
ity that knows the full structure of the network, performs all necessary computations,
and makes sure that the results are applied throughout the network. It is clear that such
an approach is not without its problems; e.g., see [8] for a discussion in the context of
traffic. In recent years, there has been growing interest in distributed algorithms that
lack such a central authority; see [21] for an introduction.

A particular area that has lead to growing interest in distributed algorithms is the
field of wireless sensor networks: The nodes in the network have limited knowledge of
the environment, local communication in a limited neighborhood, no access to a central
authority, limited computing and storage capabilities, and limited energy supply, with-
out any chance of getting recharged. The objective is to allow the network to carry out
a variety of tasks, using self-organizing and distributed methods. For a current survey
of algorithmic models, see [25], and [26] for a discussion of challenges in distributed
computing with respect to sensor networks. For an overview of some of our own related
algorithmic work, see [6,7,18].

In the WSN context, a problem similar to ECDF has been studied. The Maximum
Lifetime Routing problem asks for a flow for given demands that maximizes the time
until the first node dies. The motivation is that certain nodes collect sensor data and
continuously stream them to one or more base stations. All work on this problem models
it as following: “maximize T such that there exists a static flow for given demands,
where the flow consumes no more than a 1/T fraction of each battery.”

Madan et al. consider flows with one sink [19,20], using localized subgradient algo-
rithms. Sankar and Liu [24] solve a multi-commodity flow variant using an exponential
penalty function. A combinatorial flow augmentation scheme was proposed by Chang
and Tassiulas [5]. Zussman and Segall [27] studied a variant with special relay stations
between network and data sink. A comparison of practical protocols can be found in
Busse et al. [4].

Simply considering static flows that consume just 1/T of each battery leaves a gap
of up to Θ(n) to dynamic flows: consider a network of n nodes, connected in a line,
with source and sink at the ends, and T = n − 1. Our dynamic flow approach exploits
the fact that the source-sink-path can be used exactly once, whereas repeating a static
flow would just allocate 1/(n − 1) of the available battery capacities.

Bodlaender et al. [2] consider the maximization of data flowing from the sensors to
the data sink, with battery constraints. They neither have an explicit notion of time, nor
do they employ fairness constraints that could turn static solutions into dynamic ones.

2 Problem and Definitions

An instance of the ECDF problem comprises the following: The network G = (V, E)
with designated source s ∈ V and sink t ∈ V \ {s} (For the multi-source case, see
Section 6). We assume that time is sliced into communication rounds. In each round,
a node can forward the data it received in the previous round. We believe this is a
sufficiently close approximation of the real timing characteristics of store-and-forward
wireless mesh networks. Nodes other than the sink can not store flow to be sent later—
sensor nodes are usually extremely limited in memory.
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Each edge e ∈ E models a communication link with bandwidth ue > 0, which
defines the maximum amount of data that can be sent over e in a single communication
round. Data can be sent in both directions in a round, the bandwidth applies to the sum.

Each node v ∈ V has a non-rechargeable battery with capacity Cv > 0. There
is an energy consumption model c = (cs, cr), with non-negative functions cs ∈ RE ,
cr ∈ RE . Sending one unit of flow over edge uv, from u to v, decreases u’s battery
capacity by cs

uv and v’s capacity by cr
uv . We allow for Cv = ∞, cs

e = 0, and cr
e = 0;

all situations where this leads to divisions by zero or the appearance of ∞ in linear
programs are trivial to resolve. The energy model with cs

e = 1, cr
e = 0 for all e ∈ E is

called the trivial model. In the trivial model, the battery capacities become upper bounds
for the total flow that can be routed through a node until it dies. The applicability of our
results for more realistic models is discussed in Section 6.

Each link has a transit time τe ∈ N. Data sent over e in round θ can be forwarded
from the destination in round θ + τe. For the WSN scenario, we assume uniform transit
times, i.e., τe = 1 for all e; we call this problem variant the 1-ECDF problem. We
believe the problem with non-uniform transit times is interesting in itself.

There is a given time horizon T ∈ N. A clarification is necessary to avoid “±1
confusions”: We follow the notation from [16], where there are rounds 0, . . . , T . Each
link e can be used in rounds 0, . . . , T −τe. This reflects our wireless network scenario: If
you have a time horizon of 1, you can send data over a link once. (There is an opposing
model stemming from continuous flows, e.g., water flowing through a tube. There, you
need a horizon of 2 for a unit-transit link: One round until the first drop of water reaches
the destination, another until all the water is through.)

ECDF problem definition: Putting it together, the problem we want to solve is: Send
as much flow as possible from s to t, such that the edge capacities are obeyed, the flow
is delivered within the time horizon T , and no node sends any data after its battery is
exhausted.

To give a concise problem definition, we need a little bit of notation: We denote by
Pst the set of all feasible, simple s-t-paths in G. Because we are only interested in s-t-
paths, we can safely treat paths as sequences of undirected edges. The length τ(P ) of a
path is defined as

∑
e∈P τe, i.e., the number of edges in P with uniform transit times. A

path is feasible if τ(P ) � T . Hence, the source can relay data over P in communication
rounds 0 to T − τ(P ), �(P ) := T − τ(P ) + 1 � 1 denotes the number of times P
can be used. Now let P = (e1, e2, . . . , ek). We denote by τei(P ) the delay after which
data travelling P reaches ei, i.e., τei(P ) =

∑i−1
j=1 τej . For a node v ∈ V , c∗v,P denotes

the energy drained from v when 1 unit of flow is sent over P , i.e., c∗v,P = cr
ei

+ cs
ei+1

for inner nodes of the path, where v ∈ ei and v ∈ ei+1 for some i. For s resp. t, c∗v,P

equals cs
e1

resp. cr
ek

.
So, formally we state the ECDF problem as follows:

max
∑

P∈Pst

T−τ(P )∑

θ=0

xP (θ) (1)

s.t.
∑

P�e:
0�θ−τe(P )�T −τ(P )

xP (θ − τe(P )) � ue ∀e ∈ E, θ = 0, . . . , T (2)
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∑

P�v

T−τ(P )∑

θ=0

c∗v,P xP (θ) � Cv∀v ∈ V (3)

xP (θ) � 0 ∀P ∈ Pst, θ = 0, . . . , T − τ(P ) . (4)

In this LP, xP (θ) describes the amount of flow that starts traveling along P in round
θ. Inequalities (2) model edge capacities, and inequalities (3) describe node battery
constraints. Note that both T and |Pst| can be exponential in the problem’s encoding
size, and this LP consists of more than T |E| constraints and up to T |Pst| variables.

3 Variants and Complexities

In this section, we analyze the complexity structure of ECDF and some variants.

Theorem 1. ECDF with arbitrary transit times τe ∈ N is NP-hard.

s = v0

v+
1

1

1

v−
1

∞
v1

v+
2

1

v−
2

1

∞
v2

∞
vn−1

v+
n

1

v−
n

1 vn = t

0 0 0

0 0 00 0 0

a1 a2 an

τe

Cv

Fig. 1. ECDF instance for the reduction from PARTITION

Proof. Consider an instance of PARTITION: given n positive integers a1, . . . , an with∑n
i=1 ai = 2T for some T ∈ N, partition them into two sets of equal weight, i.e.,

find a S ⊂ {1, . . . , n} such that
∑

i∈S ai =
∑

i/∈S ai = T . We claim the PARTITION
instance is feasible iff the ECDF instance shown in Figure 1 has an optimal solution of
value 2, where the horizon is T , and the energy function is the trivial one; it is obvious
that more than 2 is impossible.

It is straightforward to see that a feasible solution S ⊂ {1, . . . , n} for the PAR-
TITION instance induces a feasible pair of paths. For the converse, suppose there is a
solution for the ECDF instance that delivers 2 flow units in time. Let P be the set of flow
paths used in the solution, and xP denote the total flow sent over path P ∈ P . Because
each {v+

i , v−i } defines a saturated node cut, P ⊆ {PS : S ⊂ {1, . . . , n}, τ(PS) � T }.
Because each v+

i is used by some flow paths with total flow 1, we get

∑

P∈P
xP τ(P ) =

∑

P∈P

∑

i:v+
i ∈P

xP ai =
n∑

i=1

ai

∑

P∈P:v+
i ∈P

xP =
n∑

i=1

ai = 2T .

Because
∑

P∈P xP = 2 and τ(P ) � T for all P ∈ P , this only holds for τ(P ) = T ,
so every PS ∈ P induces a solution S for the PARTITION instance. �

An important property of static network flows is the existence of two popular encoding
schemes with polynomial size: First, edge-based, where there is a flow value for every



The Maximum Energy-Constrained Dynamic Flow Problem 119

s

v1

2
v2

2
v3

2

v4

∞

v5

2
v6

2
v7

2
t

1|1 1|1 1|1 1|1

1|1 1|1 1|1 1|1
1|1

1|1

fe|ue

Cv

Fig. 2. Network and edge flow values where the path decomposition matters

edge. Second, path-based, where there is a flow value for every path. This even holds
for the maximum dynamic flow problem [11]. Now we show that both schemes are
not applicable to ECDF with arbitrary transit times. For the edge-based encoding we
interpret edge flow values as the maximum flow that is sent over an edge. Consider the
network and flow in Figure 2. There are four s-t-paths in it: P∩∩ = (s, v1, v4, v2, v3, t),
P∩∪ = (s, v1, v4, v7, t), P∪∩ = (s, v5, v6, v4, v2, v3, t) and P∪∪ = (s, v5, v6, v4, v7, t).
We show that the given solution—with flow value 1 for every edge—has different values
depending on the path decomposition. Let T = 6. If we use P∩∩ and P∪∪, we can
use both paths twice, with a total flow of 4. On the other hand, if we use P∩∪ and
P∪∩, the paths may be used once resp. twice, giving a total flow of 3. The only edge-
based solution encoding that we are aware of assigns time-dependent flow functions
fe : {0, . . . , T} → R to the edges, which are not necessarily of polynomial size.

Unfortunately, the usual workaround of using path-based formulation does not help:

Theorem 2. There are instances for ECDF with arbitrary transit times that allow no
optimal solution consisting of a polynomial number of flow paths.

Proof sketch. The proof employs a sequence of k chained cycles. In each cycle, a
flow path can either use a path with transit time 2k−1, or another one with zero transit.
Both paths have a flow limit of 2k−1, enforced by batteries. The edge leading to t has a
capacity of 1. It can be shown that any optimal flow must deliver one flow unit to t in
every time slot from 0 to T = 2k − 1, and each must travel on a different flow path. �

Theorem 3. Finding an ECDF solution with integral flow values is NP-hard.

Proof. By reduction from the following strongly NP-hard 3-PARTITION variant: given
three sets of positive integers {a1, . . . , an}, {b1, . . . , bn}, and {c1, . . . , cn} with L :=∑n

i=1 ai =
∑n

i=1 bi =
∑n

i=1 ci, find a partition into n triples of equal weight, i.e., find
permutations α, β, γ ∈ Sn such that aα(i) + bβ(i) + cγ(i) = 3L/n for all i.

We construct an ECDF instance G = (V, E) as follows: For each of the 3n numbers,
say ai, there is a chain Ai consisting of ai nodes connected in line, of which a+

i is the
first and a−

i is the last. Additionally, there are the source s and sink t. The source is
connected to each entry node of the first set, that is, sa+

i ∈ E for all i. Each exit node of
the first set is connected to each entry of the second: a−

i b+
j ∈ E for all i, j. Analogously,

the exits from the second set are linked to the entries of the third, and all exits from the
third are linked to t. Each edge e ∈ E has unit capacity ue = 1. Furthermore, each
node v �= s, t has a battery capacity of Cv = 1, where the power consumption model is
the trivial one: cs

e = 1, cr
e = 0 for all e ∈ E. The time horizon is T = 3L/n + 1.
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We claim that the 3-PARTITION instance is solvable iff the optimal integral ECDF
solution value is n. There cannot be a total flow of more than n because {a+

1 , . . . , a+
n }

forms a node cut with total energy n.
Assume there is a feasible, integral ECDF solution (xP (θ))P∈P,θ∈θ(P ), where P ⊆

Pst, θ(P ) ⊆ {0, . . . , T − τ(P )}, and xP (θ) ∈ N+ for all P ∈ P , θ ∈ θ(P ). Assume it
has value n. Because each of the sets {a+

1 , . . . , a+
n }, {a−

1 , . . . , a−
n }, {b+

1 , . . . , b+
n }, . . . ,

{c−1 , . . . , c−n } is a saturated node cut, it cannot be crossed twice by any path. Hence,
each P ∈ P is one of the paths Pi,j,k = (s, Ai, Bj , Ck, t), i, j, k = 1, . . . , n. Because
the flow is integral and all battery capacities are 1, each xP (θ) = 1. Each of the chains
in the graph can be used by just one flow path due to its battery capacity, and because
the total flow is n, each chain is used by exactly one path. So P = {Pα(i),β(i),γ(i) : i =
1, . . . , n} for some α, β, γ ∈ Sn. We know that

n∑

i=1

τ (Pα(i),β(i),γ(i)) =
n∑

i=1

(aα(i) + bβ(i) + cγ(i) + 1) =
n∑

i=1

ai +
n∑

i=1

bi +
n∑

i=1

ci + n = nT,

and, because no path length can exceed T due to the feasibility of the solution, we con-
clude that each path length must equal T = 3L/n+1. Therefore aα(i) +bβ(i) +cγ(i) =
3L/n for each i = 1, . . . , n, proving that α, β, γ is feasible for the 3-PARTITION
instance. It is straighforward to see the converse. �

The proof does not carry over to the fractional ECDF problem: There is a trivial LP
formulation for the ECDF instance that uses the n3 possible flow paths explicitly.

4 Centralized Algorithms for 1-ECDF

In this section, we concentrate on ECDF with uniform transit times.

Lemma 1. 1-ECDF is polynomial-time solvable, if T is polynomially bounded in n.

Proof. The time-expanded graph G(T ) has polynomial size and thus allows for a sim-
ple edge-based LP. �

A temporally repeated (“TR”) flow is a flow (xP (θ))P,θ where each path carries the
same amount of flow at all times, i.e., xP (θ) = xP (θ′) for all θ, θ′ ∈ {0, . . . , T−τ(P )}.
When T > 2n, the problem of finding a temporally repeated 1-ECDF solution can be
formulated as follows:

max
∑

P∈Pst

�(P )xP (5)

s.t.
∑

P�e

xP � ue ∀e ∈ E (6)

∑

P�v

�(P )c∗v,P xP � Cv ∀v ∈ V (7)

xP � 0 . (8)

The restriction T > 2n comes from inequality (6) which is only valid if all the paths
that use some edge e send their flow over e in at least one common point in time.



The Maximum Energy-Constrained Dynamic Flow Problem 121

s v1

∞
v2

∞
v3

∞

v4

1
t

1
1

1
1

1 1
ue

Cv

Fig. 3. Network with a gap between optimal and temporally repeated solutions

Lemma 2. Maximum temporally repeated solutions for 1-ECDF can be found in poly-
nomial time.

Proof. The dual LP of (5)–(8) is

min
∑

v∈V

Cvμv+
∑

e∈E

ueπe (9)

s.t.
∑

v∈P

�(P )c∗v,P μv+
∑

e∈P

πe � �(P ) ∀P ∈ P (10)

μv � 0 ∀v, πe � 0 ∀e (11)

The separation problem for this LP is to find a violated inequality (10), given edge
weights (πe)e∈E and node weights (μv)v∈V : Find a path P ∈ Pst satisfying

∑

v∈P

c∗v,P μv +
∑

e∈P

1
�(P )

πe < 1 (12)

or prove that no such path exists. The left-hand-side of (12) can be rewritten as

∑

v∈P

c∗v,P μv +
∑

e∈P

1
�(P )

πe =
∑

e=uv∈P

( 1
T−τ(P )+1πe + cs

eμu + cr
eμv) (13)

which is just the length of P according to some length-dependent edge weights. So the
separation problem reduces to the question whether the shortest path in Pst according
to this weight function has a length strictly less than 1.

Because τ(P ) ∈ {1, . . . , n} for each P ∈ Pst, there are just n possible values for
1

T−τ(P )+1 . We can find the shortest path by enumerating over these values. In each step,
we seek the shortest path consisting of exactly k edges for some k ∈ {1, . . . , n}. This
can be done in polynomial time by searching for the shortest path from s(0) to t(k) in
the time-expanded graph G(k). �

Lemma 3. Temporally repeated 1-ECDF solutions are not always optimal.

Proof. Consider the network shown in Figure 3. The horizon is T = 4, communication
cost is the trivial one. There are two paths in this network: The “upper” one P =
(s, v1, v2, v3, t) that can be used exactly once, and the “lower” one Q = (s, v1, v4, t),
that can be used twice with a total flow of 1 due to the battery limitation at v4. An
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optimal solution sends 1 flow unit along P at time 0 and another unit along Q at time 1,
with a total flow value of 2. Optimality holds because edge sv1 is saturated over time.

A temporally repeated solution sends xP along P at time 0 and xQ along Q at times
0 and 1. Because of the capacity of sv1, xP + xQ � 1 holds. Furthermore, 2xQ � 1
due to the battery capacity at v4. The total flow is xP + 2xQ, which is maximized by
xP = xQ = 1

2 with an objective value of 3
2 . �

Lemma 4. For T > λn, λ � 2 the value of a maximum temporally repeated solution
TR is greater than or equal to λ−1

λ OPT, where OPT be the value of an optimal 1-
ECDF solution.

Proof. Let x = (xP (θ))P,θ be an optimal solution. We construct a temporally repeated
solution y = (yP )P from it by averaging over all path flows.

So let yP := 1
�(P )

∑T−τ(P )
θ=0 xP (θ) for each P ∈ Pst. This flow satisfies all battery

capacity constraints, because each flow path carries the same total flow as in x, and it
delivers the same flow within the horizon. It may violate edge capacities though. So let
e ∈ E. Then the load on e at time θ is

∑

P�e:
0�θ−τe(P )

yP �
∑

P�e

yP � 1
T − n

∑

P�e

T−τ(P )∑

θ=0

xP (θ) � 1
T − n

Tue � λ

λ − 1
ue .

Hence λ−1
λ y is a feasible temporally repeated flow. �

Theorem 4. 1-ECDF admits a FPTAS.

Proof. Let ε > 0. If T � 1
εn or T � 2n, we can solve the problem by Lemma 1. Other-

wise, by Lemma 2 we can compute a maximum temporally repeated flow in polynomial
time and, by Lemma 4, its value is at least ((1

ε − 1)/ 1
ε )OPT = (1 − ε)OPT . �

5 Distributed Algorithm for 1-ECDF

In this section, we propose a distributed FPTAS for 1-ECDF. The core idea relies on the
approximation algorithm [13] for fractional packing problems by Garg and Könemann,
so we briefly review their algorithm: Consider a fractional packing LP of the type
max{cTx|Ax � b, x � 0} with a m̃ × ñ-matrix A, where all coefficients in A, b, and
c are nonnegative. Its dual is the covering LP min{yTb|yTA � cT, y � 0}. Initially,
x = 0 and yj = δ/bj for all j = 1, . . . , m̃, where δ := (1 + ε)((1 + ε)m̃)−1/ε.
The algorithm repeats the following iteration until yTb � 1: Let i∗ be the primal
variable (think “maximally violated” dual constraint) that minimizes (yT A)i/ci for
i ∈ {1, . . . , ñ|ci > 0}. Let j∗ be the primal constraint (think “minimum capacity
edge/node”) that minimizes bj/Ai∗j for j = 1, . . . , m̃ where Aij �= 0. Now increase
xi∗ by bj∗/Ai∗j∗ (corresponding to “sending flow over i∗”), and update the dual vari-
ables: yj := yj(1 + ε)(bj∗/Ai∗j∗)/(bj/Ai∗j) for all j = 1, . . . , m̃ with bj �= 0.

Finally, a feasible primal solution can be obtained by scaling down all variables
such that all primal constraints are obeyed; a scaling factor of 1/ log1+ε((1 + ε)/δ)
is sufficient. This can also be done during the increase of primal variables, i.e., during
routing of flow, if desired.
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Theorem 5 (Garg, Könemann [13]). Using an oracle that finds a Λ-approximation
for the maximally violated constraint, the G&K algorithm computes a Λ(1 − ε)−2-
approximation in m̃	 1

ε log1+ε m̃
 iterations.

Note that [13] only deals with optimal dual separation, i.e., Λ = 1. The extension for
arbitrary Λ > 1 is straightforward.

Similar to the previous section, we solve 1-ECDF by distinguishing two cases: T >
1
εn, where the TR gap is small, and T � 1

εn, where the horizon is polynomially
bounded. Actually, the G&K algorithm can easily be distributed, given a fast approxi-
mation for the dual separation. For this purpose, we show how to reduce the n shortest
path computations we needed in the proof of Lemma 2 to one:

Lemma 5. Let T > λn, λ � 2. Let πe � 0 for all e ∈ E and μv � 0 for all
v ∈ V . Then the dual separation problem (12) for temporally repeated flows can be

λ
λ−1 -approximated using a single shortest path computation.

Proof. The separation problem is to find a shortest path according to the length function

z(P ) :=
∑

uv∈P

( 1
�(P )πuv + cs

uvμu + cr
uvμv) . (14)

We define another function to approximate z:

y(P ) :=
∑

uv∈P

( 1
T πuv + λ−1

λ (cs
uvμu + cr

uvμv)) . (15)

Observe that for each P ∈ Pst, T � �(P ) � T − n > T − 1
λT = λ−1

λ T holds; hence
1
T � 1

�(P ) � λ
λ−1

1
T . This proves that y(P ) � z(P ) � λ

λ−1y(P ) for every P ∈ Pst.

Therefore, the minimum-y path is a λ
λ−1 -approximation to the minimum-z path. Now

y(P ) is just a sum of directed, non-negative edge weights. Then, the minimum-y path
can be found by a single run of any shortest path algorithm. �

G&K is turned into distributed algorithm for the large-T case as follows:

Algorithm 1. Distributed algorithm for T > 1
εn

Each node v ∈ V initializes and stores μv and πe for each e ∈ δ(v);
repeat

s initiates a distributed Bellman-Ford shortest path algorithm;
The network reports the approximate shortest path’s weight and capacity to s;
The network augments flow along this path, each nodes updates the dual weight, and
reports the dual objective increase back to s;

until s observes that the dual objective is at least 1 ;
Scale flow for feasibility, unless already done during augmentation.

Lemma 6. Let ε > 0 and T > 1
εn, 1

ε � 2. Then Algorithm 1 is a (1 − ε)−4-
approximation for the ECDF problem and runs in time O(n(n + m)1

ε log1+ε(n + m))
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Proof. According to Lemma 5, the Bellman-Ford algorithm computes an approxima-
tion to the dual separation problem with ratio λ

λ−1 = (1−ε)−1. Hence, Algorithm 1 is a
(1− ε)−3-approximation to finding a temporally repeated ECDF solution (Theorem 5).
Because a maximum temporally repeated flow is a (1 − ε)−1-approximation to the
original ECDF problem (Lemma 4), the solution found by Algorithm 1 is a (1 − ε)−4-
approximation. The runtime results from the iteration bound of Theorem 5 and the O(n)
runtime of a distributed Bellman-Ford computation. �
The other case (small T ) is mostly analogous, so we just give the result:

Lemma 7. Let ε > 0 and T � 1
εn. Then there is a distributed algorithm that finds a

(1 − ε)−2-approximation in time O( 1
ε2 mn2 log1+ε(

1
εmn)).

Proof sketch. Run a distributed variant of G&K, similar to Algorithm 1 on the exact
LP formulation (1)-(4). �
Together, Lemmas 6 and 7 (and the special case ε � 1

2 , T > 1
ε , which is trivial to

resolve) allow us to state the main theorem of this section:

Theorem 6. ECDF admits a distributed FPTAS. Each node v ∈ V needs to store no
more than O(p(v) + 1) many variables, where p(v) denotes the number of flow paths
using v in the solution.

6 Extensions

Multi-terminal variants: ECDF problems where there is one source and many sinks
can be solved by our algorithms, both centralized and distributed, as well. It is suffi-
cient to alter Pst accordingly. The opposite case with one sink and many sources can
be solved by exchanging them and reversing time. This just applies to the objective of
maximizing the total flow though, as max-min objective variants are no longer frac-
tional packing problems. The situation is similar for multi-commodity settings with
many sources and sinks: Maximizing the total flow is possible by adjusting Pst—in
the distributed setting an additional syncing step between the sources is needed in each
iteration. The max-min multi-commodity case can not be solved using our algorithms.

Geometric communication cost functions: In wireless networks, it is a common as-
sumption that the sending cost for transmitting over a link e of length d is cs

e = Θ(dα)
for some constant α ∈ [2, 6]. The cost for receiving is often modelled as either 0 or
Θ(cs

e). Our constructive results work for any cost function. We have stated the nega-
tive results in Section 3 using the trivial cost function for clarity. Note that the problem
instances used in the proofs can be embedded such that every link has length 1 (actu-
ally, the figures show such embeddings), where the geometric cost function becomes
the trivial one. Hence these results apply as well.

7 Conclusion and Open Problems

In this paper, we introduced the novel ECDF problem, which has direct applications in
distributed networks, e.g., sensor and ad-hoc network. We proved various negative re-
sults and show that an FPTAS exists for the network-motivated 1-ECDF variant, which
can be turned into a distributed FPTAS.
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There are various related problems of interest. Essentially, we started out with a
well-studied problem (maximum dynamic flow) and added two features: firstly, the
battery constraints that make the problem much harder (Theorems 1 and 2); and sec-
ondly, uniform transit times, making it easier. Because both constraints are important
in sensor and ad-hoc networks, studying other dynamic flow problems like quickest
flow/transshipment with these extensions poses interesting new challenges.

A tantalizing open problem is the complexity of the fractional ECDF problem with
arbitrary transit times. We conjecture that this is in P: consider the path-based LP for-
mulation. Allowing flow changes only in the first and last n steps (i.e., adding xP (n) =
xP (n + 1) = . . . = xP (T − n − 1) for all P to the formulation) may not change
the problem. This new formulation is in P, because the dual separation problem can be
easily solved similar to Lemma 2. Alas, we lack a proof.

Another open problem is the existence of an encoding scheme for the solutions with
polynomial size (cf. Theorem 2) resp. whether the decision variant of ECDF with arbi-
trary (or uniform) transit time is in NP.
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