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Abstract

We consider a robot swarm in an unknown polygon.
All robots have only a limited communication range.
We then look for a triangulation of the polygon using
the robots as vertices such that the number of robots
used for the triangulation is minimized. All edges
in the triangulation have a length smaller than the
communication range. For this Online Minimum Re-

lay Triangulation Problem, we present a lower bound
of 9

8
on the competitive ratio for any online algo-

rithm. Moreover, we give an algorithm that is 21

4
-

competitive for simple polygons and 6-competitive for
general polygons.

1 Introduction

Exploring and guarding polygonal regions are classi-
cal problems that have been investigated for decades.
Hoffmann et al. [6] considered the online exploration
of simple polygons with unlimited vision, Icking et
al. [7] and Fekete et al. [5] exploration with limited
and time-discrete vision, respectively. Exploration
with both limited and time-discrete vision is presented
by Fekete et al. [4]. Placing stationary guards was first
considered by Chvátal [1], see also O’Rourke [8].

In this paper, we combine both problems, moti-
vated as follows. Consider a static sensor network
that needs to react to different scenarios by adding
further mobile sensors, e.g. sensor nodes attached to
mobile robots as in Figure 1. Typically, these sen-
sor nodes have a limited communication range, and
no common orientation or coordinate system is avail-
able; furthermore, the expanded network has to be
well connected, asking for a triangulated network.

Classical triangulation problems (see, e.g., [8, 2])
ask for a triangulation of all vertices of a polygon, but
allow arbitrary length of the edges in the triangula-
tion. This differs from our problem, in which a limita-
tion on the edge length (given by the communication
length) is given. Placing vertices of the triangulation
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Figure 1: A robot swarm consisting of iRobot Roombas.

(robots) on arbitrary positions in the polygon in order
to achieve this limited length is closely related to the
relay placement problem, in which a set of sensors is
to be connected by relays with limited range [3]. We
use the terms robots and relays synonymously.

The rest of the paper is organized as follows. The
following Section 2 provides definitions. We present
a lower bound on the competitive ratio in Section 3.
In Section 4 we describe a 6-competitive algorithm
for polygons (with holes) and prove that this algo-
rithm is 21

4
-competitive for simple polygons. In the

final Section 5 we discuss possible implications and
extensions.

2 Notation and Preliminaries

We are given an (unknown) polygon P with n vertices.
The length of P ’s boundary is denoted by D (in case
of a simple polygon, D is the perimeter of P ).

Every robot in the swarm has a (circular) commu-
nication range r. Within this range, each robot can
perceive other robots and communicate with them.
For the ease of description we assume that r is equal
to 1 (and scale the polygon accordingly).

Given an unknown polygon P , the Online Mini-

mum Relay Triangulation Problem (OMRTP) asks for
a triangulation of P that covers P . The triangulation
must not contain edges crossing the boundary of P ,
reflecting the impossibility to communicate through
walls. The triangulation therefore contains all ver-
tices of P , plus a number of relay points. The latter
are needed because edges in the triangulation must
not have a length exceeding r. The objective is to
minimize the number of robots; that is, vertices of
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Figure 2: The polygonal corridor of width 3/4. The dash-
dotted lines indicate parts of the transmission ranges of
the relays located at the vertices.

the triangulation. This is equivalent to minimizing
the number of relays. Let ROPT denote the number
of relays used by the optimum.

The robots start from a given point located at the
boundary of the unknown environment. Each robot
is allowed to move through the area, and will then
decide a new location for a vertex of the triangulation.
There it stops moving and becomes part of the static
triangulation. This is motivated in the application:
It is desirable to partially fix the triangulation as it
is constructed, to begin location services in this area
even if the polygon is not fully explored yet. This is
a crucial property if we assume a huge area that is
explored over long times, determined by the rate of
new robots being added to the system.

3 Lower Bound

For the lower bound we use a polygonal corridor of
width 3/4, see Figure 2. For a complete triangulation,
relays must be placed at the vertices, i.e., the position
of the first two relays is fixed.

In case the algorithm places the next relay on the
boundary (w.l.o.g. we assume that it places the re-
lay on the right boundary, otherwise a mirrored con-
struction is used), the polygonal corridor will be con-
structed as depicted in Figure 3(b). Hence, the opti-
mum needs 8 relays, the algorithm uses 9.

If, on the other hand, the algorithm locates the next
relay in the center, see Figure 4(a), the polygonal cor-
ridor will be constructed as depicted in Figure 4(b).
Consequently, the optimum needs again 8 relays for
the triangulation, while the algorithm uses 9.

An arbitrary number of these polygonal pieces can
be joined using small triangular structures as depicted
in Figures 3(b), 3(c), 4(b) and 4(c), as the vertices
require relays. Thus, we have:

Theorem 1 No deterministic algorithm for the on-
line minimum relay triangulation problem can be bet-
ter than 9

8
-competitive.

4 Online Triangulation

In the following, we describe our algorithm for the
online minimum relay triangulation problem. We split

(a)

(b) (c)

Figure 3: In case the algorithm places the next relay on
the boundary (w.l.o.g. on the right boundary) (a), the
optimum needs 8 relays (b), the algorithm 9 (c). The
dashed lines indicate the edges of the triangulation.

(a) (b)
(c)

Figure 4: In case the algorithm places the next relay
in the center (a), the optimum needs 8 relays (b), the
algorithm 9 (c). The dashed lines indicate the edges of
the triangulation.

the construction in two parts: (i) a triangulation along
P ’s boundary and (ii) a triangulation of the interior.

For the boundary (i.e., the polygon’s outer bound-
ary and the boundary of holes in the environment)
we place relays within distance 1 along the boundary
and on vertices. Furthermore, we add a “second layer”
along the boundary by placing relays within a distance
of (at most)

√
3

2
to the boundary, and within distance

of (at most) 1 to the relays located on the bound-
ary, see Figure 5. Assuring this triangulated layer of
width

√
3

2
also at vertices, we need to have a closer

look at reflex vertices. The critical case for placing
many relays arises from a reflex vertex with interior
angle close to 360◦, see Figure 7. Thus, the maxi-
mum number of additional relays located at a reflex
vertex is 3, while we do not need any additional relays
at non-reflex vertices. So, we add at most 3n relays.
Consequently, the triangulation along P ’s boundary
does not use more than 2D + 3n relays.

We still need to take care of (ii): a triangulation
of the interior. Parts of the polygon of width less
than

√
3 are already covered, so we do not need to

take these into account, see Figure 8. For the remain-
ing polygon we use a triangular point grid with side
length 1, see Figure 6. In case points of this grid
would lie inside the triangulated

√
3

2
-layer along P ’s

boundary, they get dragged outside of this layer, as
depicted in Figure 9, in order to assure that the re-
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Figure 5: Example for the triangulation along the boundary, with cost at most 2D. The bold line represents the boundary
of P , the dashed lines indicate the edges of the triangulation, the dashed-dotted lines indicate again the communication
range for some relays.

sulting two parts can be glued into one triangulation
(i.e., in order to assure a distance of at most r = 1).
In case points of this triangular point grid would coin-
cide with the points from the boundary construction,
they will simply not be placed, so that no degenerate
triangles occur. Let k be the number of relays used
for this construction.

Altogether, we have:

RALG ≤ k + 2D + 3n (1)

On the other hand, we can establish lower bounds
on the number of relays for an optimal solution for
OMRTP (i.e., lower bounds for ROPT).

First, an easy observation yields the lower bound
in (2): For a complete triangulation of P we need to
place a relay on every vertex of the polygon.

ROPT ≥ n (2)

Moreover, the triangulation needs to establish edges
along all edges of the polygon P . As the maximum
distance of relays is r = 1, we have:

ROPT ≥ D (3)

As described earlier, k is the number of relays used
when overlaying P with a triangular point grid with
side length 1 such that all points are located inside of
P (i.e., in the interior, on edges or on vertices), see

Figure 6: Example for a cover of the interior of P , using
k relays.

Figure 6. Obviously, k is not uniquely defined, but for
any such overlay the optimum cannot use less than k
relays to triangulate P , i.e., we get a lower bound of

ROPT ≥ k (4)

Combining Equations 1–4 yields:

Theorem 2 There is a 6-competitive strategy for the
online minimum relay triangulation problem in poly-
gons (even with holes).

Note that we can find the places for relays in an
online fashion: From the given starting point, relays
move along the boundary, assuring the placement of
the relays for the triangulation along P ’s boundary.
Then, again starting from the given start point, an
overlay with a triangular point grid is constructed.
local adjustments of the type in Figure 9 assure the
placements of the relays in accordance with the strat-
egy. When a hole is encountered during the construc-
tion of the triangular grid for the interior the bound-
ary, a

√
3

2
-layer is constructed around the hole.

Simple Polygons. We can achieve a factor better
than 6 for simple polygons by a more careful anal-
ysis of the relays that we place at vertices. Let
n240 be the number of reflex vertices whose interior

Figure 7: Example for the triangulation at a 360◦ reflex
vertex. The black semi-bold lines represent the boundary
of P (for clarity the two boundary lines are not drawn
parallel but one is slightly offset from its actual position).
The circular points are relays charged to the reflex vertex.
Squares get charged to the perimeter—e.g., the shaded
squares to the shaded piece of boundary and the filled
squares to the bold piece of boundary. At most 3 addi-
tional relays are used.
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Figure 8: A polygon P . The layer of width
√

3
2 is depicted

in gray.

angle, αi, is greater than 240◦ and let nnr be the
number of non-reflex vertices. For the sum of the
interior angles in a simple polygon, Σαi, we have:
Σαi = (n− 2) · 180◦ < n · 180◦. This equation yields
a bound on n240:

Σαi ≥ n240 · 240◦ + nnr · 0◦

+(n− nnr − n240) · 180◦

⇔ (n− 2) · 180◦ ≥ (n− nnr) · 180◦ + n240 · 60◦

⇔ (nnr − 2) · 3 ≥ n240

⇒ n240 ≤ 3 · nnr

For each of the n240 reflex vertices we need at most
3 additional relays, for the nnr non-reflex vertices no
additional relays are placed. For each of the remaining
(n−nnr−n240) reflex vertices (with an interior angle
≤ 240◦) we place one additional relay. Hence, for the
total number of relays added at vertices, RV, we have:

RV ≤ (n− nnr − n240) · 1 + n240 · 3 + nnr · 0
≤ (n− nnr) · 1 + 6 · nnr = n + 5 · nnr

We distinguish two cases as follows.

1. nnr ≤ n
4
⇒ RV ≤ n + 5

4
n = 9

4
n

2. nnr > n
4
. In this case, we need at most 3 addi-
tional relays for at most 3

4
vertices:

n− nnr ≤ 3

4
n⇒ RV ≤ 3 · 3

4
n = 9

4
n

Altogether, we have:

RALG ≤ k + 2D +
9
4
n ≤ 21

4
ROPT (5)

Theorem 3 A simple polygon allows a 21

4
-

competitive strategy for the online minimum
relay triangulation problem.

5 Conclusion

We introduced the online minimum relay triangula-
tion problem. We gave a lower bound of 9

8
for the com-

petitive ratio for any online algorithm (even in simple
polygons). For polygons we presented a 6-competitive
algorithm, and showed that it is 21

4
-competitive for

Figure 9: An example for the combination of the trian-
gulation along P ’s boundary and the triangulation of the
interior into one triangulation.

simple polygons. Considering the gap between the
lower bound and the given competitive ratio an open
question is whether we are able to improve the ratio.

Another closely related problem arises from con-
sidering a limited number of robots; the Maximum

Coverage Triangulation Problem (OMCTP) asks for a
triangulation using � robots, such that the area within
an unknown polygon P that is covered is maximized.
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