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Abstract. We present an approach to esti-
mating distances in sensor networks. It works
by counting common neighbors, high values
indicating closeness. Such distance estimates
are needed in many self-localization algorithms.
Other than many other approaches, ours does
not rely on special equipment in the devices.

1 Introduction

One of the key problems in sensor networks is
to let nodes know their location, for example,
by storing coordinates w.r.t. a global coordi-
nate system. Unless all nodes are equipped with
special localization devices (e.g., GPS/Galileo),
there needs to be an algorithm that computes
positions based on information available to the
network.

Practical localization algorithms often use
connectivity information enriched with distance
estimates for adjacent nodes [4]. Note that the
corresponding decision problem is NP-hard [1];
however, there exist heuristics that are success-
ful in practice.

Various ways to measure distance exist. Ex-
amples include the transmission time-of-flight
over a wireless channel, the latency of infrared
communication, or the strength of a wireless
signal that decreases with distance. Good ap-
proaches have an average error of about 10–20%
of the maximal communication range.

Our approach does not rely on special hard-
ware or node capabilities. Assuming the prob-
ability of successful communication decreases
with increasing distance, the expected fraction
of a node’s neighbors that it shares with an adja-
cent node defines a monotically decreasing func-
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tion that can be inverted, resulting in a distance
estimator based on this fraction. All that is re-
quired is the ability to exchange neighbor lists
and a model of communication characteristics.

2 Distance Estimation

General Case: We assume that nodes are
uniformly distributed over the plane, with den-
sity δ. That is, the expected number of nodes
in a region A ⊂ R2 of area λ(A) equals δλ(A).
The neighborhood Ni of a node i depends on
communication characteristics, which are mod-
elled by an appropriate communication model.
We focus on symmetric models only, i.e., i ∈ Nj

iff j ∈ Ni. The model is a probability function
p(d) that defines the probability that two nodes
i and j with distance d = ‖i− j‖ are connected.
Hence, the expected size of a neighborhood is
E[|Ni|] = δ

∫
R2 p(‖x‖)dx for all nodes i.

We want to estimate the distance of i and j by
counting how many of i’s neighbors are shared
with j. The expected size of this fraction is

fp(d) := E[|Ni ∩Nj |/|Ni \ {j}|] (1)

=

∫
R2 p(‖x‖)p(‖x− (d, 0)T‖)dx∫

R2 p(‖x‖)dx
,

where d = ‖i − j‖. If f−1
p exists, two nodes i

and j can exchange their neighbor lists, compute
the shared fraction ϕi,j = |Ni ∩ Nj |/|Ni \ {j}|
and estimate their distance as f−1

p (ϕi,j). Note
that ϕi,j and ϕj,i may be different, so some ad-
ditional tie breaking or averaging scheme must
be used.

There is an elegant way to implement this ap-
proach for practical purposes, as proposed by
Buschmann et al. [2]: Instead of f−1

p , a small
discrete value table of fp is stored in the nodes,
and the estimate is done by reverse table lookup.
This even works for p or fp obtained by numer-
ical or field experiments, and it can be imple-
mented using only integer arithmetic.
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Scaled density πδ 5 8 10 15 20 40 80
Absolute error (inner) .225 .183 .165 .137 .120 .087 .062
Absolute error (boundary) .257 .201 .182 .154 .135 .101 .077
Relative error (inner) .623 .500 .445 .362 .308 .219 .156
Relative error (boundary) .692 .558 .499 .407 .353 .259 .194

Table 1: Average estimation errors for different densities

Unit Disk Graphs: A widely used model for
radio networks is the Unit Disk Graph (UDG),
where two nodes i and j are connected by a link
iff ‖i− j‖ 6 1.

For UDGs, the estimated neighborhood frac-
tion (1) is f : [0, 1] → [0, 1] with

f(d) =
2
π

(
arctan(d

2 )− d
2

√
1− (d

2 )2
)

. (2)

The restriction of the domain is feasible because
nodes of larger distance than 1 are never neigh-
bors. f−1 exists, but unfortunately we lack a
closed formula for it. Instead, we approximate
f−1 by its Taylor series about f(0) = 1. Here,
we use the 7th-order Taylor polynomial

t7(ϕ) =− π

1! 2
(ϕ− 1)− π3

3! 25
(ϕ− 1)3

− 13π5

5! 29
(ϕ− 1)5 − 491π7

7! 213
(ϕ− 1)7. (3)

We do not use a higher order because evaluating
the polynomial on practical embedded systems
would become numerically unstable.

There is one issue with this kind of estimation:
Real networks do not span the whole plane, but
only a certain area A. Nodes that are far from
∂A do not suffer from that, but closer nodes
have fewer neighbors. We exploited this fact to
actually detect the network boundary [3]. Our
distance estimation breaks ties using this effect:
When estimating the distance of i and j, the
node with a larger neighborhood is likely far-
ther from ∂A than the other, so we use his com-
puted neighborhood fraction. Hence the estima-
tor function we use is

min{1, t7(|Ni∩Nj |/(max{|Ni|, |Nj |}−1))}. (4)

3 Experiments

To evaluate the UDG estimator’s performance,
we ran some simulations. Table 1 shows their re-
sults. The first row contains the expected size of
a neighborhood, without boundary effects. For

UDGs, this is πδ. Furthermore, the average ab-
solute and relative errors are reported. (For an
estimate e for a real distance d, |e − d| is the
absolute and |e − d|/d the relative error.) The
former equals the error relative to the communi-
cation range, which is the common measure for
distance estimators. The average is taken sepa-
rately for two classes of links: For “inner” links,
the communication ranges of both end-nodes
are fully contained in the network region. For
“boundary” ones, both end-nodes lie at most 1
from a straight boundary. This separation has
two benefits: First, the estimate in its current
form focuses on the inner ones only, and sec-
ond, it removes the dependency on the network
region’s shape from the evaluation.

One can see how our approach reaches the
desired accuracy of 6 20% at small densities
of 10 neighbors at average – for inner nodes.
We are conviced that further enhancements are
possible by explicitly addressing nodes at the
boundary.
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