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Abstract

We address a problem in air traffic management:
scheduling flights in order to minimize the maximum
number of aircraft that simultaneously lie within a
single air traffic control sector at some time t. Since
the problem is a generalization of the NP-hard no-
wait job-shop scheduling, we resort to heuristics. We
report experimental results for real-world flight data.

Keywords: Air Traffic Control, trajectory schedul-
ing, flight plan scheduling, no-wait job shop.

1 Introduction

In the air traffic control system, the volume of
airspace in the altitude range that aircraft utilize is
partitioned into a set of sectors. We consider the
set of all trajectories flown between city pairs. Any
one trajectory is modeled as a polygonal path, from
each vertex (way point) being specified by a point,
(x, y, z, t), in space-time. For a given set of sectors
and a given set of trajectories, we can compute the
occupancy count, nσ(t), of a sector σ at any time
t. For purposes of air traffic control, it is important
that nσ(t) not be “too large”; often the occupancy
count is compared with the Monitor Alert Parameter
(MAP) value of the sector σ, which is related to the
“capacity” of the sector. Depending on the timing
and routing of the flights, though, the MAP values of
certain congested sectors are often predicted to be ex-
ceeded (if current flights remain on filed flight plans),
resulting in the rerouting of aircraft to avoid those
sectors that are anticipated to be at or near full ca-
pacity during some period of time.

We consider the following scheduling problem:
For a given set of trajectories and a given sector-
ization of the NAS, determine alternate departure
times (“close” to the originally scheduled times) so
that the modified trajectories result in minimizing
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maxσ,t nσ(t), the maximum occupancy count of a sec-
tor over a time window of interest.

Problem Statement: Formally, the problem is de-
fined as follows: Given a set Σ of sectors and a set
Θ of periodic flight plans. The common period of all
plans is T , e.g., T = 24 hours. Each flight plan θ de-
fines a sequence Σθ = (σθ,1, σθ,2, . . .) of the sectors it
visits, where σθ,k ∈ Σ ∀k. It also defines a departure
time dθ ∈ [0, T ), and for each sector σθ,k the dwell
time tθ,k.

Assuming a flight θ departs daily with a delay of
∆θ, it will therefore be in sector σθ,k during the in-
tervals

Iθ(σθ,k,∆θ) := [
∑
`<k

tθ,`,
∑
`≤k

tθ,`)+dθ+∆θ+TZ. (1)

Therefore, at time t ∈ [0, T ) (and also t+ kT for any
k ∈ Z), a total of

nσ(t) := |{θ ∈ Θ : t ∈ Iθ(σ,∆θ)}| (2)

flights will be in sector σ ∈ Σ.
Our goal is to find delays (∆θ)θ∈Θ to minimize the

overall maximum occupancy count maxσ,t nσ(t). The
delays are constrained to be within the range [0, D]
for parameter D. Note that additionally allowing
flights to leave early, i.e., ∆θ < 0, does not change
the problem due to the periodicity of flight plans:
A delay range [−a, b] is equivalent to [0, a + b], for
a, b > 0.

Relation to Job-Shop Scheduling: When there
is no constraint on the maximum delay, i.e., D ≥
T , our problem is equivalent to no-wait job-shop
scheduling. We represent each flight plan as a job
and each sector as a machine. We seek to minimize
makespan, i.e., the smallest time in which all jobs can
be processed, where no two jobs can be on the same
machine at the same time. The no-wait constraint
ensures that, once started, a job can neither be de-
layed between machines nor suspended while being
processed on one. An optimal solution to the job-
shop problem with makespan M can be converted
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maxσ,t nσ(t)
set1 set2

Original flight plan 38 58
Shifting 30 49
Incremental 27 43
Randomized rounding 29 39
Lower Bound 20 32

Table 1: Workload improvement of algorithms

maxθ ∆θ (
∑
θ ∆θ)/

|{θ|∆θ 6= 0}|
set1 set2 set1 set2

Shifting 0.017 0.018 0.005 0.004
Incremental 0.042 0.041 0.009 0.013
Randomized
rounding 0.041 0.041 0.003 0.008

Table 2: Rescheduling statistics (T = 1, D = 0.042,
and ∆θ ∈ [0, D] )

trivially to a flight plan solution with maximum oc-
cupancy dM/T e. Vice versa, an algorithm for flight
plan scheduling also solves job-shop by finding the
largest λ for which a flight plan with all processing
times scaled by λ can be scheduled with maximum oc-
cupancy 1. This can be achieved using binary search.

No-wait job-shop scheduling has attracted various
researchers (see, e.g., [4, 6, 7, 5, 3]). [1] gives a PTAS
for a special case of the problem and shows hard-
ness of approximation for another case. [2] provides
a survey of scheduling algorithms, defining the var-
ious terms and known results for some of the basic
problems. Since the job-shop problem is NP-hard, so
is flight plan scheduling.

2 Results

We designed several heuristic algorithms and com-
pare them with a given flight plan and a lower bound.

The shifting heuristic is a greedy algorithm select-
ing a flight trajectory and adjusting its start time to
lexicographically decrease the workload vector. The
selected trajectory is one of those participating the
most crowded interval of the sector with currently
maximum workload. We repeat this shifting until no
more shifts can reduce the workload vector. The in-
cremental algorithm repeatedly applies the shifting
heuristic while adding trajectories one at a time, in
random order.

The randomized rounding algorithm solves a
linear programming formulation whose variables de-
scribe a probability distribution for each flight plan.

Then, a solution is generated by drawing delays from
these distributions.

For lower bounds, we solve a linear programming
relaxation of a formulation similar to the one used in
randomized rounding.

We used real-world data for our experiment, con-
sisting of 57 sectors and 12123 trajectories for set1
and 1281 sectors and 11986 trajectories for set2. Ta-
ble 1 shows the maximum occupancies in the given
flight plans and heuristic solutions, as well as the
lower bound. Table 2 shows how much they are
altered. The results show a considerable improve-
ment over the originally scheduled flight times. Fu-
ture work will specifically aim to improve the lower
bound, as we believe that the heuristically produced
solutions are already almost optimal.
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